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SUMMARY

The local recovery factor was determined experimentally along the

surface of a thin-walled 20 ° included angle cone for Mach numbers near

6.0 at stagnation temperatures between 1200 ° R and 2600 ° R. In addition,

a similar cone configuration was tested at Mach numbers near 4.5 at

stagnation temperatures of approximately 612 ° R. The local Reynolds

number based on flow properties at the edge of the boundary layer ranged

between O.IXlO 4 and 3.5X!04 for tests at temperatures above 1200 ° R and

between 6XlO 4 and 25Xi0 _ for tests at temperatures near 612 ° R.

The results indicated, generally, that the recovery factor can be

predicted satisfactorily _sing the square root of the Prandtl number.

No conclusion could be made as to the necessity of evaluating the

Prandtl number at a reference temperature given by an empirical equation,

as opposed to evaluating the Prandtl number at the w_ll temperature or

static temperature of the gas at the cone surface.

For the tests at temperatures above 1200 ° R (indicated herein as

the tests conducted in the slip-flow region)_ two definite trends in the

recovery data were observed - one of increasing recovery factor with

decreasing stagnation pressure, which was associated with slip-flow

effects and one of decreasing recovery factor with increasing temperature.

The true cause of the latter trend could not be ascertained, but it was

showm that this trend was not appreciably altered by the sources of

error of the magnitude considered herein.

The real-gas equations of state were used to determine accurately

the local stream properties at the outer edge of the boundary layer of

the cone. Included in the report, therefore, is a general solution for

the conical flow of a real gas using the Beattie-Bridgeman equation of

state. The largest effect of temperature was seen to be in the terms

which were dependent upon the internal energy of the gas. The pressure

an([ hence the pressure drag terms were unaffected.



INTRODUCTION

The transport of energy across the bounCiarylayer surrounding bodies
in flight has been the subject of intensive _heoretical and experimental
study. A significant number of the studies have been concerned with the
amount of available energy absorbed by the bcdy; hence the recovery-
factor term has becomeconsiderably importan±:. Although various theories
have been developed for the prediction of the recovery factor, a lack
of experimental data exists for high Machnumbersat the correct flight
enthalpy levels.

The various theories as developed can bc divided into two main
groups. The first of these is applicable at low speeds (Machnumbers
below 3.5)- In these theories (see refs. i, 2 and 3) air was considered
to be a perfect gas with thermodynamicand transport properties invariant
with temperature. This assumption led to the results of Crocco (ref. i)
who found that the recovery factor for a laminar boundary layer was
predicted by the square root of the Prandtl rumber. A conclusion of this
analysis was the invariance of the recovery factor with flight Mach
numberand Reynolds number.

The second approach was necessitated by the advent of flight speeds
greater than Machnumbersof 3.5 wherein the _ssumption of constant
thermodynamic and transport properties w_s nc longer valid. Several
authors (refs. 4 through 7), upon examining the basic energy transport
processes_ found_ first_ that the enthalpy rather than the temperature
of the gas must by used in evaluating the recovery factor; secondly; the
recovery factor for a laminar boundary layer _onld still be predicted by
the square root of the Prandtl number_provided the Prandtl number is
evaluated at a proper reference temperature. This approach then accounted
for the real-gas effects (up to dissociation) and indicated that the
recovery factor would be a function of both t_mperature and Machnumber
(see ref. 4).

The present investigation provides data _howingthe local recovery
factor along a 20° cone at a free-stream Machnumbernear 6.0 and stag-
nation temperatures up to a_o_t 94 percent of flight stagnation tempera-
tures. The data obtained are comparedwith ti_e square root of the Prandtl
number. The Reynolds numberrange of the tests conducted at high
temperatures falls near the middle of the region defined by Tsien and
others (see ref. 8) as the slip-flow region; _onsequently_ the relations
which can affect the recovery factor in slip _io_ are used. In the
continuum region somedata for a 20° cone at ii4achnumbersnear 4.50 and
temperatures of about 612° R are presented.

In the analysis of the high-temperature .:[ata_ it was believed
necessary to have accurate information concerling the conical flow field.
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Consequently, a general solution for the conical flow using the Beattie-

Bridgeman equation of state was developed to provide the needed

information; and this solution is included herein (see appendix A).

NOTATION
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A

a

cf

CH

Cp

c v

h

K

Kn

k

k*

M

m

Pr

P

Q

Re

area, ft 2

speed of so_md; ft/sec

skin-friction coefficient

dimensionless heat-transfer coefficient

specific heat at constant pressure; m Btn/ib OR

specific heat at constant volume, Btu/ib OR

enthalpy, 2 Btu_ib

correction term (defined in eq. (B23) or in eq. (AI0)

Knudsen number

thermal conductivity; m Btu/ft hr OR

dependent variable given in equation (9)

length of cone, ft

Mach number

model _all thickness perpendicular to model axis; ft

Prandtl number, _Cp
k

pressttre, 2 ib/ft 2

heat transfer rate Btu/hr

pUx
Reynolds number;

iWithout sub script

air.

a_Without subscript

static conditions

m, the values for Cp, k_ and _ pertain to

t, the values for p, T, h, and p denote



R

r

T

t

U

X

x

Y

7

C

O

P

1"

q)

gas constant, ft-lb/ib OR

hr-h c
recovery factor_

ht_-hc

2 oRab solute tentperature

temperature, oF

velocity_ ft/sec

Tr-T c
(for Cp assumed constant)

mole fraction of particular species _n a mixture of gases

distance along model longitudinal ax_.s_ ft

coordinate perpendicular to x axis; ft

ratio of specific heats, cp
c v

emissivity

radius vector angle from axis of symmetry, deg

characteristic temperature of vibrati_ns_ OR

viscosity_ Ib/ft-hr

dependent variable given in equation '[9)

density, lz2 ib/ft s

time_ hr

cone half angle, deg
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_mr

Subscripts

m

n

s

conditions at outer edge of the boundEry layer along the cone

surface

model material

normal to radius vector

shock _ave

_J2See footnotes land 2 p. 3.



t

tr

w

Oo

total conditions (i.e., conditions that would exist if the gas

were brought to rest isentropically)

transverse curvature

conditions at the wall or surface of the model

free-stream conditions

a particular radius vector

conditions employing zero flow and nearly zero pressure

Superscript s

5

t

slip flow; ideal gas flow in appendix A

quantities evaluated at the reference temperature T' (see eq. (6))

DESCRIPTION OF APPARATUS

Wind Tunnels

In this investigation two different wind t_unels were used to test

two similar models. For the tests conducted at high temperatures_ herein

referred to as the hot-flow tests_ a pebble-bed heater was employed in

conjunction with the Ames Low-Density Wind Tunnel. Where the stream

stagnation temperatures were just high enough to prevent liquefaction

of the air components the tests were made in Ames i0- by 14-inch tunnel

and are referred to as the cold-flow tests.

Hot-flow tests.- These tests were conducted in a Mach number 6.0,

low-density, high-temperature wind tunnel (fig. i) which had as a heat

source zirconium-oxide pebbles (dia. = 3/8-inch) heated by natural gas

burners. The pebbles were allowed to reach a maximum temperature of

4000 ° F. Surrounding the pebbles was an inner liner of insulating

refractory which was contained in a steel shell fabricated in several

sections. At the bottom and top of the shell_ openings were provided

for the entrance of the cold-storage air. A circular steel nozzle was

placed in the center section of the steel shell. The nozzle_ whose

internal contours were obtained by the method of characteristics for a

cold-flow Mach number of 6.0 (boundary-layer corrections applied), had

an exit diameter of 4.296 inches and a throat diameter of 0.465 inch_

and was 15.20 inches long. A_ater jacket surrounded the entire nozzle

to keep the i_ner _al!s cool. The model was placed in an open-jet-type

test section. Downstream of the test section a converging-t_De diffuser



was used to decelerate the flow. The air_ ugon leaving the diffuser_
vas cooled by a water injection system_ and the desired back pressure

_as regulated by a five-stage steam-ejector system.

Cold-flow tests.- The Ames i0- by 14-Inch Supersonic Wind Tunnel

was used for these tests. A complete description of the tunnel is given
in reference 9-

Models and Instrumentation

Hot-flow tests.- The model used in these tests w_s a 20 ° included

angle cone fabricated from type 416 stainless steel. A sketch of the

model is shown in figure 2(a). The configuration was mounted on a

transite end-plug locked to a hollow stalnless-steel sting. (The

transite material was used for the end-plug tD insure negligible heat

conduction losses out the base of the model.) Care was taken to prevent

nonuniform circumferential heat conduction by maintaining a uniform wall

thickness (the wall thickness was 0.02_ in.). In order that a reliable

value of emissivity could be used over the teuperature range encountered_

the external and internal surfaces of the mod_l were plated with a thin

coating of pure nickel and then "flashed" with platlntun (ends of

thermocouple were covered by the plating).

Chromel-alumel thermocouples were embedded along the surface of the

model and in the radiation shields which are _hown in figure 2(a).

Chromel-alumel was used because of its proven performance for measuring

temperatures over a range from -300 ° to 2_00 ° F. The thermocouple leads

(wire size was No. 28 B and S gage) were brought out the sting and

connected to indicating microvolt potentiometers. To insure consistent

readings throughout the investigation_ the mo[el thermocouples were

calibrated before and after each test against known controlled tempera-

tures. During the tests the temperature-time history of the cone surface

temperatures was obtained by photographing th_ indicating dials on the

potentiometers. A 70-mmmotion-picture came_ capable of 20 frames per

second was used with an electric timer placed in view of the camera.

A traversing mechanism inside the test chamber provided means for

mounting several models and/or probes and mow ng these individually into

the center of the air stream. The model for these tests was always

placed at zero angle of attack with respect t_ the geometric center line
of the nozzle.

The total temperature of the hot-flow air stream was measured by an

aspirated double-shielded chromel-alumel thermocouple probe shown in

figure 3. The thermocouple leads from the probe were connected to a

standard potentiometer which was initially balanced against a standard

cell. Concerning the measurement of the stagnation temperature_ it w_s

realized that effects such as radiation_ conductlon, and boundary-layer
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phenomena along the probe could cause significant errors in obtaining a

true stagnation temperature reading. The probe was designed to prevent
these effects from influencing the true stagnation readings (see ref. i0

for a discussion of these types of temperature effects)_ and the

thermocouple was calibrated against known temperatures.

The free-stream static pressure in the test section (assumed constant

across the test section) was measured at two stations. One station, a

wall orifice_ was located i/2-inch upstream of the nozzle exit. At the

other station_ two probes (alined perpendicular to the nozzle center

line) were located just aft of the nozzle exit and out of the nozzle

flow. The pressures at the wall orifice and one exit probe were recorded

on Pirani gages. The other exit pressure was measured with a McLeod

gage (see ref. ii for a description of these gages). The stagnation

pressure of the entering flow was measured by a standard U type mercury

manometer.

Cold-flow tests.- The model used in the i0- by 14-inch wind tunnel

was also a 20 ° included angle cone fabricated from type 416 stainless

steel (fig. 2(b)). The model was sting-mounted in the t_nnel test

section at 0° geometric angle of attack.

The several temperatures along the surface were also measured with

chromel-alumel thermocouples embedded at the various stations along the

model (see fig. 2(b)). The thermocouple leads were connected to indicating

microvolt potentiometers and the system was calibrated in the same

manner as was indicated in the previous description of hot-flow tests.

Instrumentation for determining total temperature and Mach number has

been discussed in reference 9-

TEST PROCEDURE

Hot-Flow Tests

The tunnel was operated between temperatures of 1200 ° and 2600 ° R

at stagnation pressures of approximately 6.6 and 12.4 psia. For each

test condition the flow was assumed stabilized when the static-pressure

data recorded by the one HcLeod sad two Pirani gages were identical.

The Mach number was determined from the ratio of static- to total-

pressure data. (Corrections were applied for the effect of caloric

imperfections on the ratio of static pressure to total pressure.) Also,

the Mach number was checked during several high-temperature runs by a

flow visualization method in which the angle of the oblique shock

originating at the cone apex could be obtained within ±0.2 _. For all

runs the average Mach number was found to be 5.92 with a maximum

deviation of ±0.12.
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When the flow was established, the shielded thermocouple (total-

temperature probe) was placed in the center of the air stream_ and the

total temperature w_s recorded. The probe wa_ removed and the model

was rotated into position. The temperature o_ the model was then

measured continuously until it remained consti_nt with time at all stations

(three surface and two radiation shield temperatures). Upon reaching

equilibrium (approximately 10-13 minutes) the model was removed from the

hot stream and the total temperature probe ag_in was placed in the hot

stream. The temperature of the hot stream was taken as the average of

the two temperature probe readings. The diffc_rence between these

readings was never greater than 60 ° F (a function of temperature

distribution in the heater)_ but for 80 percent of the runs the
difference was less than 30 _ F.

To determine the cone external radiation losses to the surroundings,

the model w_s allowed to cool under condition_ of zero flow and nearly

zero pressure. For these tests the model was brought up to equilibrium

temperature. Then_ the tunnel pressure was q_ickly reduced to a pressure

of less than i0 microns of mercury and the fl(w was shut off. Data were

recorded continuously up to the time at which the model was within DO °

to i00 ° F of its environmental temperature (u_ual!y a time interval of

approximately 20 minutes). It was observed d_ring these tests that the

internal radiation was approximately zero since the temperature of the

outer radiation shield was approximately the same as the temperature of

the cone (see appendix B for the derivation of the radiation heat loss).

Cold-Flow Tests
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In the i0- by 14-inch wind tunnel the dat_ were obtained at Mach

numbers between 4.41 and 4.59 (in conjunction _ith a different investi-

gation) and the total temperature of the air_ heated electrically, was

of the order of 612 ° R. The Mach number was c_librated and adjusted as

indicated in reference 9- It _as believed tha_ these data would be

representative of cold-flow data obtained at M _ 6.0 in the continuum

flow region since the difference in Mach number should have no significant

effect on the recovery factor.

In these tests_ after several mlnutes the model reached equilibrium

(assumed zero external and internal radiation Losses) and the potentiom-

eters which indicated the surface temperatures were photographed.

REDUCTION OF DATA

Hot-Flow Tests

Gas _ro_ertles.- In the analysis of the a_rodynamdc heat-transfer

measurements made during the present investigation, it was necessary to
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determine the local stream properties at the outer edge of the boundary

layer of the cone. Because of the high temperatures encountered during

the present tests, the gas can no longer be considered thermally and

calorically perfect (ideal) and real-gas equations of state must be

used; thus a general solution for the conical flow of a Beattie-Bridgeman

gas was developed. This solution is included in appendix A, and for

comparison purposes table II shows the ideal and real-gas properties

(up to dissociation) at the outer edge of the boundary layer for several

cone angles at various temperature levels.

Recovery factor.- As mentioned previously, the significant quantity

defining the recovery factor for high-temperature flows is the enthalpy

of the air rather than the temperature. Thus the recovery factor is

given by

hr-h c
r = (I)

l_oo-hc

The enthalpy terms he and ht_ refer to characteristics outside

the boundary layer and in the free stream, respectively_ and were

calculated from the flow solutions developed in appendix A and from the

wind-t_u_nel flow properties. The quantity hr is the recovery enthalpy

and is defined as the enthalpy of the air at the surface under the
conditions of no heat transfer to or from the surface. The latter

condition did not exist during the present investigation. Furthermore_

the skin temperature of the cone rather than the enthalpy of the surface

air w_s measured. It was necessary, therefore_ to develop an involved

set of equations to reduce the skin-temperature data to the desired

recovery enthalpy. The development and discussion of the equations is

presented in appendix B.

Briefly, the equation for the recovery enthalpy developed in

appendix B can be written

hr -- + i (2)

where K may be considered a correction term_ and accounts for the

following effects:

(i) Radiation heat transfer from external and internal surfaces of

the cone

(2) Convective heat transfer to the cone

(3) Conductive heat transfer along the cone in the longitudinal

direction

In the derivation of K, account was taken of the fact that the

Reynolds number was sufficiently small for the flow to be in the slip-flow
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station was the samefor five different Machn<_bers tested between
4.41 and 4.59, and observation showsthe axial temperature gradient
along the cone to be negligible. The trend in the recovery factor
(figs. 6(b) and 7) was found to be similar to _hat established in other
cold-flow tests (see ref. 2); that is_ the rec)very factor is essentially
independent of Machnumber and Reynolds n_mf0er,and for laminar flow can
be predicted by the square root of the Prandtl number. Both the low
value of the local Reynolds n_mber, Re < 2._XI;)S_ and the close
agreement of the experimental data and the _i] ] rule for the recovery
factor in laminar flow_ indicate that the flow over the cone was
definitely laminar.

Hot-Flow Tests

The results of the hot-flow tests are presented in figures 8
through ii. In figure 8_ distributions of surface temperature along
the model are shownfor each test condition. _he time history of the
surface temperature is given in figure 9 for cne representative test
condition. The recovery factors calculated from the basic data of
figures 8 and 9 are presented in figures i0 at! iI as f_nctions of
stagnation temperature and Reynolds number (based on T'), respectively.

The recovery factors shownin figures i0 and Ii are in fair agree-
ment in magnitude _rith the square root of the Prandtl number. However_
because of the spread of the data, no unique agreementwith either
or P_r c can be established (P_-rrc _ 0.8_). The data presented in
figure i0 also indicate two consistent trends, one of increasing recovery
factor w-lth decreasing presstu'e_ and one of decreasing recovery factor
with increasing temperature. These trends wi] i be discussed in the
following paragraphs.

Effect of _ressure on recover_ factor.- ORe trend of increasing
recovery factor with decreasing pressure (sta_ation temperature constant)

seems to be in agreement with the present theories. The over-all effect

of lowering the Reynolds number from the rang_ associated with continu_n

flow_ through the transition and slip-flow re, limes and into the free-

molecule-flo_ regime is to raise the recovery factor gradually from its

continuum value (r m 0.85, assuming laminar fl!ow) to its free-molecule-

f!o_ value (r > 1.0_ see ref. 8). For the pr_sent investigation, a

reduction of s_agnation pressure at constant stagnation temperature

lowered the Reynolds n_mber. Since the Reyno_Hs numbers are in the

slip-flow range (see fig. 4), an increase in the recovery factor _ith

decreasing pressure wo__Id be expected. Also_ it was ascertained that

the assumptions involved in the data reduction have little effect on

this trend.
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Effect of tem]oerature on recovery factor.- The other trend apparent

in figure i0 is that the recovery factor decreased with increasing

temperature. This trend is contrary to what might be expected in the

slip-flow regime, as discussed previously_ since the Reynolds number

decreased with increasing temperature (constant pressure). From the

data of the present investigation, ho_ever_ it is difficult to ascertain

the true cause of this trend. The data may represent the actual effect

of temperature on recovery factor at higher temperatures or an apparent

effect resulting from uncertainties in the experimental measurements

or the assumptions involved in reducing the data. To see the effect of

the various factors that may contribute to this result it is necessary

to review briefly the basic nature of the investigation and to consider

the assumptions involved in the data reduction.

me dete_nation of the recovery factor (given by eq. (l)) is
dependent upon a knowledge of the vall enthalpy under conditions of

continuum flow and no heat transfer. For investigations at elevated

temperatures _herein the model surface becomes heated and thus radiates

energy, it is necessary either to cancel the radiation or to formulate

an energy balance equation to determine the adiabatic wall enthalpy hr.

Since the latter approach was taken_ the value of the actual

convective heat transfer dQct r vas determined (all the terms except

d_ct r in the energy balance equation (B21) could be evaluated from the

experimental data). The classical continuum convective heat transfer,

then, was obtained from

dQc = _dQctr (8)

where _ is a variable and accounts for various effects of the low_

density high-temperature flow field. In particular, for this investigation_

included the effects of changes in boundary-layer thickness_ velocity

profile, Maxwell reflection coefficient and thermal accommodation

coefficient.

Once the classical heat transfer is k_uo_-m, the recovery factor in

terms of the actual heat transfer, is expressed as

d[_ctr

r = _k* + 1_--he (9)
ht_-h c

vhere dQctr/_k* is equal to K (see eq. (2)) and is given by equation

(B24). (The term k* is a function of the geometry and the flow field

properties, and is, in effect, related to the classical heat-transfer

coefficient.)
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Since the assumptions involved in evaluating the term _ can affect

the value of the recovery factor, it is worthwhile to see what effect

reasonable variations in these assumptions ha_e upon the recovery-factor

data presented herein. The first assumption _nvo!ved the bo1_adary-layer

thickness. The boundary-layer thickness was evaluated by an empirical

equation, (BI9). If this thickness were thin_.er by either 15 or 75

percent from the value used herein (a reduction in thickness could be

produced by either slip-flow effects or the use of a different base for

the Reynolds number)_ the recovery at the hig_ temperatures would be

decreased by approximately i and 5 percent_ respectively.

Secondly, the velocity profile of the bo_:ndary layer was assumed

to be quadratic. Changing the order of the profile from second to first

or to third produced virtually no change in the recovery factor for the

range of Knudsen numbers of the test.

The Maxwell reflection coefficient_ O 3 a_:_dthe thermal accommodation

coefficient_ _, were taken as 0.90 for these _aalyses. A variation of

-i0 percent (from 0.90) for _ and _ produce_ a i- and 2-percent

increase_ respectively_ in the recovery factor. Very little is known_

however_ of the correct value of these param_ers for the surface condi-

tions and wall temperature of the present inw_stigation. A discussion

of these factors is given in reference 8 wher_ they are indicated to be

a function of wall temperature. This is espe_:ially important for the

thermal accommodation coefficient since_ at the w_ll temperatures herein,

the internal vibrational energy _as excited _d this may have caused a

much greater variation in _ than considered

Also, the accuracy of the basic experime1_al data could affect the

recovery factor presented herein. The accurac:_y of the thermocouples for

the wall measurement was taken as ±i percent_ the manufacturer quoted

accuracy. A 1-percent variation in wall temp_rature produces a

corresponding 1-percent variation in recovery factor. The stagnation

temperature was taken as that indicated by th_ probe. If the probe

itself had a recovery factor and radiation lo_:ses, this value would be

low, or if the pebble bed radiated to the pr_,e, this value would be high.

A ±l-percent variation in stagnation temperature produced a _l-percent

variation in recovery factor.

In the preceding paragraphs the factors _ffecting the behavior of

the recovery factor in the high-temperature l,_w-density range have been

discussed briefly. Although no explanation c_mbe given for the cause

of the trend noted herein, it is evident that no single source or combin-

ation of sources of error of the magnitudes m_ntioned was able to alter

appreciably the trend of decreasing recovery :factor with increasing

temperature. However, it must be remembered that the correct values of

some of the parameters are unknown_ especial_r the thermal accommodation

coefficient_ and sufficiently low value could completely alter the present

trend. Corroborating these results with others must be postponed until

other high-temperature data become available.
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CONCLUDING REMAHKS
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Wind-tunnel tests were conducted to determine whether the recovery

factor can be predicted by the simple square root of the Prandtl number

rule at stagnation temperatures approaching those encountered in flight.

Data were obtained for a Mach number of 4._ at a stagnation temperature

of about 600 ° R, and for a N_ch number of 6.0 at stagnation temperatures

between 1200 ° and 2600 ° R. The Reynolds number for all tests was less

than 2.5xi05 and for the Mach number 6.0 tests in particular, the

Reynolds number was always less than iO _, thus introducing slip-flow

effects.

From the data show_ the Prandtl number rule is believed to be

valid for estimating the recovery factor in the range of temperatures

considered. The Prandtl number used herein is based on a reference

temperature Tr; however, because of the nature of the experimental data_

no conclusion can be draw_ as to the necessity of using this temperature,

as opposed to say the static temperature of the gas at the cone surface.

The recovery-factor data of the hot-flow tests also indicated two

definite trends_ one of increasing recovery factor with decreasing

pressure_ and one of decreasing recovery factor with increasing temper-

ature. The first trend was seen to be in agreement with the present

theories; that is_ in slip flow an increase in the recovery factor with

decreasing pressure (or Reynolds number) would be expected. The second

trend_ that of decreasing recovery factor with increasing stagnation

temperature_ was shown to be contrary to what might be expected in the

slip-flow regime since the Reynolds number decreased with increasing

temperature. The cause of this trend could not be e_plained_ but, it

was pointed out that no single source or combination of sources of

error of the magnitudes considered was able to alter appreciably the

trend of decreasing recovery factor with increasing temperature.

Therefore_ this trend should be viewed with reservation until other

high-temperature data become available for corroboration.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif._ Mar. 20, 1961
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APPENDIX A

A THEORETICAL SOLUTION OF IiNVISCID COYICAL FLOW OF REAL

GASES AT TEMPERATURES BELOW DI_SOCIATION

A necessary prerequisite to the determinl_ion of the transfer of

energy from a flowing gas to a body in contact with that gas is a

thorough knowledge of the properties of the flow field. For flows of

air wherein the local static temperatures are low; the air can be

considered ideal; and convenient solutions exist for most simple flows.

However_ for local static temperatures greater than about 700 ° R_ air

can no longer be considered an ideal gas and it is necessary to develop

an exact solution for the conical flow of a real gas.

Because the solution presented herein is of interest to the general

field of high-temperature gas dynamics; it is presented in a manner to

make it entirely independent of the experimental portion of this paper.

The solution_ as discussed in this part_ has been programmed for

an ]IBM 704 computing machine and is available upon request to Ames

Research Center.

Determination of the properties of a conical flow field involves

the simultaneous solution of the following equations:
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d (pv sin 8) + 2pu sin 8 = 0
d_

du

v --
d@

u du + v dv + dP = 0
P

(Coni inuity)

(Irr( tati onallty)

(Morns:ntum)

(AI)

(A2)

(A3)

h + u2+v2 - ht (Ene]'gy)
2

h = h(p_p) (Sta_;e)

A suitable combination of equations (AI), (A2) and (A3) yields the

well-known Taylor-Macoll equation for conical flow (see ref. 18)

d_u

d8 m

ae2<ue + cot @ d_

m

- a@

(A_)

(A5)

(A6)
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which is basic to the solution presented herein. The use of the above

set of equations assumes that the gas is inviscid, is everywhere in

thermodynamic equilibrium, and is isentropic before and after the shock

wave.

The equation of state for the gas used in this paper is the Beattie-

Bridgeman equation with provision for variable specific heats. Choice

of this model for the gas was based on the following:

(i) This equation of state is an accurate representation of gas

characteristics up to temperatures where dissociation (diatomic

and polyatomic molecules) and ionization (monatomic molecules)

are encountered.

(2) This equation is accurate at densities where intermolecular

forces should be considered.

(3) Constants required in the Beattie-Bridgeman equation of state

are available for a large number of gases.

Table I presents the constants needed to make the Beattie-Bridgeman

equations applicable for a number of the more common gases of current

interest. For a more complete table of the Beattie-Bridgeman constants

see reference 19. Data pertaining to the vibrational energy levels of

other gases can be obtained in references 20 and 21.

The discussion of the solution is divided into three main areas:

(i) Determination of flow characteristics ahead of the shock wave.

(2) Determination of flow characteristics immediately behind the

shock wave.

(3) Determination of the flow field between the shock wave and the

body.

DISCUSSION

Conditions Ahead of Shock Wave

In general, the conditions ahead of a shock wave are defined by one

of two sets of three variables. In free-flight investigations the

variables usually specified are velocity, static temperature, and static

pressure. In wind-ttumel investigations the variables usually specified

are Mach number_ stagnation temperature, and stagnation pressure. The

first set is used in this paper as the direct input to the calculation

of the flow through shock waves. Hence, where the second set is specified,

a considerable amount of calculation is required to transform these
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variables into those of the first set with the inclusion of real-gas
effects. The required transformation equations are the subject of this
section, and as presented herein are solved _y an iterative process.

In solving for the temperature and pressure that satisfy the set
of initial conditions, recourse is madeto tle usual conditions of
adiabatic reversible flow. However, to acco1_t for the differences
between an ideal gas and the Beattie-Bridge_m gas (see ref. 22), the
enthalpy, the entropic equation of state, and speed of sound equations
are modified as follows:

i

7

Pt P% _tt- _-t/ i
(AS)

A

3
i

8

a = JY :J TRT

The correction factor for the enthalpy equation is given by:

2-.AoJ -- 1 + 7"1 G + p 0 - _ "
7 RT

(A9)

+ p2 Aof 5 BoC ps
RT 2 Ts B°b/ +

where G is given below in general form and the necessary constants

are presented in table I for the gases considered of interest herein.

a = A alxiov____ i

T exp (evi/T)-I-

i = 1,2,3,4

by:

where

The correction factor for the entropic equation of state is given

K = _E (i + elP + e2P 2 + espS) (AiO)

e, E, and F are given below (see table I for necessary constants)
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Ao c

em= Bo RT T s

Aof Boe

e2 = R-T- " Bob - --_T

3@c
es - TS

A

3
i

8 E - rl i = 132_3_4
i z -

F = exp [P <]3o + _) + p2 ('B'Oc<_'@B_-_+DS _-2 B°bc_l____,/j

The correction factor for the speed of so_u_d is given by."

I = _ (1 + 2elp + 3eap 2 + 4esp s)
1

(All)

In order to calculate the above correction factors; the density

and specific heats of the gas must be calculated for the Beattie-Bridgeman

gas. The density is given by

P = _T (i + glP + gap 2 + gsP s) (Ai2)

where

e_
gl= -R-_

g_ =

g_ -----

[9e1(e2-el 2) -ca]

(RT) s
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The specific heat at constant volume is _iiven by."

6Rc ( Bo Bob a)Cv =-@v + Crib + T-_-- p 1 +-_- p --]-- p
(A13)

where Cvib is given below and c--v as well _s the constants for Cvi h

are given in table I.

Crib = R_ dixi Lsln h(0vilST)
i

The specific heat at constant pressure i_ given by

2c

+ _-_ 1 + B(p + Bob p

cp= cv+_ (A!_)
i + 2emp + 3eap _"+ 4esp s

The ratio of specific heats, 7, is by definition

C v

Since the forms are known for the vario_ correction factors and

thermodynamic properties for the Beattie-Bridl;eman gas_ the iterative

process to determine the static temperature_ _tatic pressure, and velocity

proceeds in the following manner. As a first approximation_ the static

temperature and pressure are taken as the ides l-gas values; namely 3

A

3
1

8

(AI6)

n

(AI7)

The values for static temperature and pr_ssure are then used to

calculate the correction factors for the Beattie-Bridgeman gas. The

static temperature for the Beattie-Bridgeman gas is then found from

TtJt
= -- Cl-X)

J
(A18)
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where

M2

A
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The static pressure is found from

P=Pt
(Alg)

and the velocity is given by

= m (A20)

The degree of accuracy of the temperature and pressure given by

equations (AIS) and (AI9) is dependent upon the initially assumed

values given by equations (AI6) and (AI7). It is usually necessary to

iterate the solution which involves using the values calculated in

equations (AIS) and (AI9) to re-calculate the correction factors and

then repeat the solution of equations (AI8) and (AI9).

The significant characteristics ahead of the oblique shock which

are required to calculate the flow immediately behind the oblique shock

are the vectoral quantities Tt_n, Pt_ n and M_n. The use of the

vectoral quantities perhaps bears some explanation. When the momentum

and energy equations normal to the w_ve are written

P_ + p_U na = const = Pt_ n
(A21)

U_n2

h_ +--_--= const = ht_ n = h(Tt_ n, Pt_ n)
(A22)

it is observed that the normal stagnation conditions must be used. These

quantities in general are different from the free-streamMach number and

stagnation conditions. The normal Mach number is given by:

=  sin 0s (A23)

The evaluation of the stagnation temperature and pressure normal

to the shock w_ve proceeds as follo_s_ where the static conditions and

Mach number are given in equations (AI$), (AI9) and (A23), respectively.
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The stagnation temperature normal to the shock wave is given by

TcoJ0o

_t_ = :_(l x) (A24)

where

shock wave is given by

PKt_ n

Pto_n =

X is evaluated for M_ n. The stagnatJ on pressure normal to the

(A25)

As a first approximation to the above tenperatures and pressures,
the ideal gas values of

A

3
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8

and

( )oo "2 _ (A26)

Pt_ n = Poo 1 + _-l M_ y-:
2

(A27)

can be used where T and P are the free-stream values determined pre-
viously ((AIS), (AI9)). This solution is also iterated until sufficient
agreement is found.

Conditions 7_mediatelyBehind Shock Wave

If the conditions in front of the shock waive are known, the static

temperature and pressure behind the shock wave can be found by an

iteratlve solution. As a first approxlmation_ the following values
can be used:

_s=T_
[2:_n_-(Y-:)][(y-:)_% 2]

(A28)

and

Ps : Poo L' y+l ] (A29)
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The density behind the shock wave is given by the following"

_sJ_P_2 [Y_n ( Ls - _-----OI+_sp_ [_n _--_I-L) + I_]-Ls = 0
(A30)

A
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I
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_here

then:

L = _ + gmP + gap e + gsP 31

The temperature and pressure for the Beattie-Bridgeman gas are

Tt_mJt°°n (1-Xs) (A31)
Ts : Js

where

and

LP_'_ 2 (A3 2)
×s: \rJ

FpsLs(I-Xs)] (A33)

Here again_ the required agreement for successive values of

and Ps is obtained by iteration.

W s

The total Mach number and velocity behind the shock wave are given

by the following relation.

The normal Mach number behind the shock is:

Msn : M_n Is Ts \Ps/

The tangential Mach number is given by

(A34)

,t_n = _,tan # Isis
(A35)
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and the total _ch number is then given by:

Ms = _MSn 2 + Ms a,t_L

The speed of sound behind the shock wave is _iiven by:

and the total velocity is

(A36)

(ABJ

U = Msa s (A38)

The stagnation conditions behind the shock wave are found from:

TsJs

Tt s = Jts(l_Xs ) (A39)

A
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where X is given by equation (A32) _ and from

Pts - Ks

The ideal-gas flow equations are used to dete _mine the initial values

of Tts and Pts used in the iterative so!uti_n of equations (A39) and

(A40) .

Conditions Between Shock Wave and Body

In the conical flow field_ between shock wave and body_ the velocity

and hence temperature and pressure are constmlt along radial vectors

from the cone apex. The solution of the coni,_al flow field is then a

step-by-step solution from one radius vector to the next.

The velocity along any radius vector is l_iven by:

= + d<_>d0+{d_') d0_ (A41)%i %i- _ i-_ kdo%i-_-/-
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The velocity normal to the radius vector is given by:

(A42)

A
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_there the Taylor-Macoll equation is used as follows:

m

e):
i-'1

/du_e a e

- o

-%

i-l

(A6)

The subscript i denotes any given radius vector_ the first vector

(at an angle 8s-Z_) being i=l and so forth. The shock wave would

then be i=O, at which the following boundary conditions are known:

e = @ s

u = U_cos es (A_3)

V = -Ms i%as

The entire solution is completed by numerical integration at each

subsequent radial vector (8-z_) until the radius vector equals the cone

surface half angle. The total velocity on any given radius vector is

given by

u : Ju_'+ v2 (A4_)

At this point in the solution_ values for stagnation temperature

(A39), stagnation pressure (A40), and velocity (A44) have been obtained.

Hence_ with the exception of Mach number_ the same quantities are known

as were used in determining the flow characteristics ahead of the shock

wave. As a first approximation to the value of Mach number, the following
is used:

% (A4_)
= a_i_l

This value of Mach number and the stagnation temperature and pressure is

then used in equations (AIS) and (AIg) to calculate the static tempera-

ture and pressure. Again this solution must be solved by iteration

because of the approximation for Mach number.
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A question that always arises is, what quantity, if any_ can be

used as a convenient and invariant normalizing parameter for the velocity.

For this purpose, the only quantity that is truly invariant is the

stagnation enthalpy, which is analogous to the square of the stagnation

speed of sound of ideal-gas theory, and is a _arameter used to normalize

the velocity

w -- (A46)
ht_

The solution is continued until v$ = 0, _hich is the boundary
condition for the cone surface.

In using a solution of this type, for any assumed values of M,

and 8s, the half-angle of the cone is unknow_ and given only by the

complete solution. If the conditions for a cone of definite half-angle

are desired, several solutions can be run, and the flow field for the

cone interpolated between two solutions. Shown in table II are sample

solutions for i0 °, 20 °, and 40° (half-angle) cones at i000 °, 2600 °, and

3600 ° R.

The largest effect of increased temperature on the properties of

a conical flow field is seen to be in the values affected by the internal

energy of the gas (i.e., vibrational energy). The enthalpy is naturally

expected to increase with temperature, and the calculations show, for

the higher temperatures_ significant changes in the specific heat_ Cp,

and 7. The pressure and_ hence_ the pressure 1rag are seen to be

unaffected by temperature.

For the temperature and cone angle considered_ the effects of

increased temperature are seen to be small. _!owever, for larger cone

angles, or higher temperatures, considerable departure from the ideal-gas

conical flow properties exist.

A

3
i

8
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APPENDIX B

DEVELOPMENT OF EQUATION FOR RECOVERY FACTOR

A
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8

As pointed out in the introduction, several authors have found

that for flight speeds greater than a Mach number of 3.5 the enthalpy

rather than the temperature of the gas must be used in evaluating the

recovery factor. For such conditions then_ the recovery factor is
defined as

hr-h c
r -- (B1)

htoo-hc

The quantities hc and ht_ were determined directly from the measure-

ments of the flow characteristics of the wind tunnel, and the properties
of the conical flow field were determined by the methods discussed in

appendix A. The quantity hr is the enthalpy of the air at the surface
of the cone under the conditions of no heat transfer to or from the cone

and of temperatures at equilibrium. The first condition did not exist

during the present test. Furthermore, the skin temperature of the cone

rather than the enthalpy term_ hr, was measured. Hence_ it is necessary

to use an involved set of equations to reduce the skin-temperature data

to the desired enthalpy quantity, hr. The development and discussion of

these equations is the subject of this appendix.

To develop the equations for the recovery factor, it w_s necessary
to determine the heat balance into and out of an incremental volume of

the cone in the vicinity of the temperature-measuring station. The

incremental volume, dV, shown in the sketch below is bounded by two

sides having areas_ A z and A2_ and the external and internal surfaces

of area, A e and Ai_ respectively:

A e A2
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To the order of the differential length, dx, these areas and volumes

can be expressed in terms of Al_ as follows

where

and

dA
Aa = Al +_dx

aAi= (A_- _m2)
dx

m cos rp

(B2)

(B3)

aAe--(A:+ _m2), a_ (B4)
m cos

dV = A:dx (:B5)

Al = _(2xm tan _ - ma)

dA
:= 2mntan

The various heat flows comprising the net total heat to the volume, dV,

are:

i. The conductive heat transfer along the metal skin, Qi and Qo-

2. The radiative heat transfer from the cone surfaces, Qri and Qr e.

3- The convective heat transfer from the air to the cone surface, Qc"

Each of these forms of heat transfer will be discussed in the following

sections.

It should be noted that during the present tests, the cone tempera-

tures used to determine the recovery factor were measured after the

model reached equilibrium temperatures so thet steady-state techniques

were used in the following derivations.

A
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CONDUCTI-fE HEAT TRANS_ ER

In deriving the conductive heat-transfer equations, two assumptions

were made:

I. No temperature gradient across the skin thickness.

2. No circumferential temperature gradient.



The equation for the conductive heat transfer into

d_w
Qi = -kraAl -_x

and the heat transfer out is given by

dV is given by:

29

(B6)
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Qo = -kmA2 _ + (B7)

(Note: The minus sign arises in equations (B6) and (B7) because x is

in a direction of positive heat flow; that is, Tw decreases with positive

x_ so that dTw/dx will always be negative. The minus sign must

therefore be included for these equations to be compatible.)

The net transfer of heat by conduction to volume dV is then given by
(neglecting second-order terms in dx)

dQoi = Qi " Qo

d_ d_ dx (BS)= km dx + A_ _2y

where A2 has been expressed in terms of Am; km is the thermal

conductivity of the metal; and Tw is temperature measured at the wall.

The above equation requires a knowledge of the temperature gradient

along the cone. In determining the values for d_/dx and d2Tw/dx a, the

data for each thermocouple station were fitted to a second-order

expansion of the form T = ax2 + bx + c. In this way a consistent

approach to obtaining the derivatives was assured.

Also required in the above equation is the thermal conductivity of

the material. For the material used (stainless steel 416) the conduc-

tivity was obtained from reference 23. The variation with temperature

of the conductivity is shown in figure 12.

RADIATION HEAT TRANSFER

Radiation to External Surroundings

For the present investigation_ the radiation heat transfer was

determined experimentally by allowing the model to cool in the wind

tunnel under conditions of zero flow, a near vaeuum_ and tunnel-wall
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temperatures the sameas those used to measurethe recovery factor. The
temperature of the cone as it cooled was measuredas a function of time
and the quantity (d_/d_)z F in relation to the cone temperature was
obtained and is shownin figure 13. During these tests to determine
the radiation heat transfer, it was noted thst the temperatures at the
three measuring stations along the cone surfsce and at the front
radiation shield were the same, thus indicating no conductive heat
transfer along the cone or internal radiatioz to the shield. Hence,
the radiation heat transfer from dV to the external surroundings was
given by"

dQre = -PmClom _-_/ZF dV

Substituting equation (BS) into the above equation gives

A
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dQre = -pmcpmAl \tit /2F
(B9)

where

_m

Cpm

T

density of material

specific heat of material

time

Unfortunately, experimental data giving the specific heat of the

material, Cpm , as a ftmction of temperature ior stainless steel 416

could not be found in the literature. Consequently, the values used

for Cpm were derived from the empirical exiression:

ci (BIO)

where

w i fraction of specie i

ci molar heat capacity of specie i

M i molecular weight of specie i
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The chemical composition of the stainless steel is given in table Ill
and values of Cpm in relation to temperature are shownin figure 14.
(As a matter of interest other values of km and Cpm for different
steels are presented in figures 12 and 14, respectively. Data are
from references 24 to 28.) Note that the experimental Cp values for
stainless 403 (composition nearly the sameas 416, see table Ill) has
a similar trend to that given by the theory for 416 and 403.
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Radiation to Internal Shields

In contrast to those measurements made to determine the external

radiation while the model was cooling, the temperature of the cone

surface and the internal radiation shields were not the same for the

steady state (flow-on) tests. The equation for thermal radiation

between the internal surface of the cone and the radiation shield was

derived using the approach of reference 2, and is given by

where

Ts

dQri-- - + Fs-i) i

emissivity of unoxidized platinum

Stefan-Boltzmmmn constant

temperature of front radiation shield, OR

Evaluating the form factors gave:

Fi_ s = sin

Fs_ i = 0

and if equation (B3) is substituted for

given by:

15.

dAi, the internal radiation is

(A] -_l 2)
dQr i = eg(Tw 4 - Ts 4) sin qDre,cos _ dx (Bll)

The emissivity, e, is shown as a function of temperature in figure

The data were obtained from reference 29.
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CONVECTIVEHEATTRANSF}R

In this section_ the basic equation for convective heat transfer
to a flat plate in continuum flow will be pre_ented. Various correction
terms to the basic equation will then be pres(nted in order that the
results be applicable to the present investigation.

Basic Equation

The equation for convective heat transfer to a flat plate incorpo-
rating the variation of the fluid properties vith temperature is given

by (see ref. 4)

where

CH

hr

0c

Uc

dQ c = 3600 CH0cUc(hr - _r)dAe

dimensionless heat-transfer coefficient

recovery entha!py

enthalpy at wall

air density at edge of boundary layer

velocity at edge of boundary layer

and the factor 3600 converts the unit time from seconds to hours.

It will be noticed that the convective heat transfer is then pro-

portional to the difference between the recovery enthalpy, which is

required to determine the recovery factor, an l the enthalpy at the wall,

which can be computed from the temperature me:_surements made in the

investigation.

Van Driest (ref. 4) calculated the dimensionless parameter_

CH R_c, for a laminar boundary layer on an i]sulated flat plate at

various stagnation temperatures. His result is plotted in figure 16.

Expressing Ae in terms of At, the basle equation for the convec-

tive heat transfer becomes

dQc= 36OO(CE
PcUc (Bin)

A
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Correction Factors Considered

33

The basic equation is for an insulated flat plate in continuum

flow whereas in the present case, a cone in the slip-flow regime is

being considered (see fig. 4). Correction factors are required to

account for these differences. A summary of the theoretical and

experimental approach of the effect of slip flow on heat transfer is

given in reference 30 and the applicable equation is

A
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Qc = % B (_13)

where the bar denotes slip flow and B is a function of the slip

velocity ratio. In addition, the transverse curvature of the cone will

have an effect on the skin friction. In reference 30 or 31 it was

shown that when 5*cos _/R is less than or of the order of unity (for

the present tests 5*cos _/R, where 5" is boundary-layer displacement

thickness and R is local radius of external surface of cone, was

always less than 0.30), the skln-friction coefficient, Cftr, is given by:

cft r = Gcf

or

_ftr = G_f (BI4)

where the subscript tr denotes transverse curvature.

Combining the correction factors and considering the effect of

transverse curvature gives the convective heat transfer in the slip-flow

region:

dQct r = _ BG (_--f_)dQ c
\cf/

(Bl_)

where the factor _ transforms the basic equation from that for a

flat plate to that for a cone (see ref. 32).

The factor B is given by (see ref. 30):

2NP4 - Vc/
(BI6)
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where

c_= (7+i)_ _ \2-

i

½
Uc

(slf:p velocity ratio)
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and

n

7

ff

Kn

Pr'

_-_e

Tt_-Tc

order of velocity profile

ratio of specific heats, Cp

cv

Maxwell reflection coeffic£ent

thermal accommodation coefficient

Knudsen number

Prandtl n_mber evaluated at reference temperature

The factor G is given by (see ref. 311:

o = i + B o.5!7+ o.9i3yj + o.i_)l(7-i)_2

where
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_ Tc
Ce =_

Pc Tw
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and

coefficient of viscosity with subscripts w referring to wall and

c to outer edge of boundary layer

The coefficient of viscosity_ _ is given by Sutherland's equation

(ref. 12) as

: 264.o84×!o-5 _12+ 2o2 (B17)

The factor (_f/cf) is given by (see ref. 30)

c-f_-_'zEf(D]_2 (B18)
cf (2+ L)

where

i

and

f(T)
= 1-_ +_ l°ge - 1.0 +

16 - Ls

19(2+ _,)

The Knudsen number is required to evaluate several of the previous

terms. The Knudsen number as used herein is defined as:

where h, the local mean free path, as determined from kinetic theory

is given by
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and the boundary-layer thickness for an insu3ated flat plate (ref. 33)

is given by

b = 5.0 x (i + 0.08 _,_.2) (BI9)

By the application of the Hantsche-Wend_i (ref. 32) transformation

from a flat plate to a cone the Knudsen number can be expressed as I

o.756 Mc 7_ (B20)
_r : (1 + 0.08 M_2)

Correction Factors Negl_cted

A
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The effect of boundary-layer disp!acemelt on heat transfer was

neglected because it was found that for each test condition the hypersonic

interaction parameter [_ = N_S_e/R_-_c)] never exceeded a value of 0.3

(see ref. 30). Such low values imply that the interaction between the

boundary layer and inviscid flow region is w_ak.

ENERGY BALANCE

Since the data were taken at equilibri_ conditions_ the net heat
transfer to the volume dV can be written a_

0 = dQoi - dQre - dQri + dQct r (B21)

iThe transformation gives for the cone _alues

where Xand8

_c =_ _ (see ref. _'4)

8c = 8/_ (see ref. 35)

are the flat-plate values.
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Substitution of equations (BS), (B9), (BI!) and (BIS) gives

<_ dTw d_) (dTw)+ A I dx + PmcpmA1 dx
0 =km dx \dT/zF

-_(_ - _shS:: _ ,(A:-_2) _x
m cos

+_f3-BG 3600 (CH R_R-_ec)PcUc (hr - hw),(A_ + _m2)

m cos M

(B2_)

Thus, it is possible to write

hr = _ + K (B23)

where K is the total correction to the measured enthalpy of the air

at the wall to determine the recovery enthalpy.

In terms of the measured quantities,

T

h_ --$ cpTw
o

where Cp is the specific heat at constant pressure.

Solving equation (B22) for K gives

:f PcUc(A l + xm a) -m -km
K = 6236 BG H m cos M _ dx dx

kdT/ZF ::
(B24)

in which all terms can be calculated from the measured cone temperatures,

_ind-tunnel flow characteristics, and the relationships derived herein.
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TABLE IIl.- COMPOSITION OF STAINLESS I_TEEL 416 AND 403

Compo sit ion,

Element

Carbon, C

Chromium, Cr

Iron, Fe

Manganese, Mn

Molybdenum, }40

Nickel, Ni

Phosphorus, P

Silicon, Si

Sulfur, S

pert

416

0.19

m3 .oo
83.97

1.00

o.6o

0.04
1.O0

0.24

o.l_I
13.oo I
34.85 I

1.00 I

0.50
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